1,018 research outputs found

    Microscopic dynamics underlying the anomalous diffusion

    Full text link
    The time dependent Tsallis statistical distribution describing anomalous diffusion is usually obtained in the literature as the solution of a non-linear Fokker-Planck (FP) equation [A.R. Plastino and A. Plastino, Physica A, 222, 347 (1995)]. The scope of the present paper is twofold. Firstly we show that this distribution can be obtained also as solution of the non-linear porous media equation. Secondly we prove that the time dependent Tsallis distribution can be obtained also as solution of a linear FP equation [G. Kaniadakis and P. Quarati, Physica A, 237, 229 (1997)] with coefficients depending on the velocity, that describes a generalized Brownian motion. This linear FP equation is shown to arise from a microscopic dynamics governed by a standard Langevin equation in presence of multiplicative noise.Comment: 4 pag. - no figures. To appear on Phys. Rev. E 62, September 200

    Ferromagnetic material in the eastern red-spotted newt notophthalmus viridescens

    Get PDF
    Behavioral results obtained from the eastern red-spotted newt (Notophthalmus viridescens) led to the suggestion of a hybrid homing system involving inputs from both a light-dependent and a non-light-dependent mechanism. To evaluate the possible role of a receptor based on biogenic magnetite in this animal, we performed magnetometry experiments on a set of newts previously used in behavioral assays. The natural remanent magnetization (NRM) carried by these newts was strong enough to be measured easily using a direct-current-biased superconducting quantum interference device functioning as a moment magnetometer. Isothermal remanent magnetizations were two orders of magnitude higher than the NRM, suggesting that ferromagnetic material consistent with magnetite is present in the body of the newt. The NRM has no preferential orientation among the animals when analyzed relative to their body axis, and the demagnetization data show that, overall, the magnetic material grains are not aligned parallel to each other within each newt. Although the precise localization of the particles was not possible, the data indicate that magnetite is not clustered in a limited area. A quantity of single-domain magnetic material is present which would be adequate for use in either a magnetic intensity or direction receptor. Our data, when combined with the functional properties of homing, suggest a link between this behavioral response and the presence of ferromagnetic material, raising the possibility that magnetite is involved at least in the map component of homing of the eastern red-spotted newt

    Geometry of escort distributions

    Full text link
    Given an original distribution, its statistical and probabilistic attributs may be scanned by the associated escort distribution introduced by Beck and Schlogl and employed in the formulation of nonextensive statistical mechanics. Here, the geometric structure of the one-parameter family of the escort distributions is studied based on the Kullback-Leibler divergence and the relevant Fisher metric. It is shown that the Fisher metric is given in terms of the generalized bit-variance, which measures fluctuations of the crowding index of a multifractal. The Cramer-Rao inequality leads to the fundamental limit for precision of statistical estimate of the order of the escort distribution. It is also quantitatively discussed how inappropriate it is to use the original distribution instead of the escort distribution for calculating the expectation values of physical quantities in nonextensive statistical mechanics.Comment: 12 pages, no figure

    Nonextensive Entropies derived from Form Invariance of Pseudoadditivity

    Full text link
    The form invariance of pseudoadditivity is shown to determine the structure of nonextensive entropies. Nonextensive entropy is defined as the appropriate expectation value of nonextensive information content, similar to the definition of Shannon entropy. Information content in a nonextensive system is obtained uniquely from generalized axioms by replacing the usual additivity with pseudoadditivity. The satisfaction of the form invariance of the pseudoadditivity of nonextensive entropy and its information content is found to require the normalization of nonextensive entropies. The proposed principle requires the same normalization as that derived in [A.K. Rajagopal and S. Abe, Phys. Rev. Lett. {\bf 83}, 1711 (1999)], but is simpler and establishes a basis for the systematic definition of various entropies in nonextensive systems.Comment: 16 pages, accepted for publication in Physical Review

    Information Theory based on Non-additive Information Content

    Full text link
    We generalize the Shannon's information theory in a nonadditive way by focusing on the source coding theorem. The nonadditive information content we adopted is consistent with the concept of the form invariance structure of the nonextensive entropy. Some general properties of the nonadditive information entropy are studied, in addition, the relation between the nonadditivity qq and the codeword length is pointed out.Comment: 9 pages, no figures, RevTex, accepted for publication in Phys. Rev. E(an error in proof of theorem 1 was corrected, typos corrected

    Multiplicative noise: A mechanism leading to nonextensive statistical mechanics

    Full text link
    A large variety of microscopic or mesoscopic models lead to generic results that accommodate naturally within Boltzmann-Gibbs statistical mechanics (based on S1kdup(u)lnp(u)S_1\equiv -k \int du p(u) \ln p(u)). Similarly, other classes of models point toward nonextensive statistical mechanics (based on Sqk[1du[p(u)]q]/[q1]S_q \equiv k [1-\int du [p(u)]^q]/[q-1], where the value of the entropic index qq\in\Re depends on the specific model). We show here a family of models, with multiplicative noise, which belongs to the nonextensive class. More specifically, we consider Langevin equations of the type u˙=f(u)+g(u)ξ(t)+η(t)\dot{u}=f(u)+g(u)\xi(t)+\eta(t), where ξ(t)\xi(t) and η(t)\eta(t) are independent zero-mean Gaussian white noises with respective amplitudes MM and AA. This leads to the Fokker-Planck equation tP(u,t)=u[f(u)P(u,t)]+Mu{g(u)u[g(u)P(u,t)]}+AuuP(u,t)\partial_t P(u,t) = -\partial_u[f(u) P(u,t)] + M\partial_u\{g(u)\partial_u[g(u)P(u,t)]\} + A\partial_{uu}P(u,t). Whenever the deterministic drift is proportional to the noise induced one, i.e., f(u)=τg(u)g(u)f(u) =-\tau g(u) g'(u), the stationary solution is shown to be P(u,){1(1q)β[g(u)]2}11qP(u, \infty) \propto \bigl\{1-(1-q) \beta [g(u)]^2 \bigr\}^{\frac{1}{1-q}} (with qτ+3Mτ+Mq \equiv \frac{\tau + 3M}{\tau+M} and β=τ+M2A\beta=\frac{\tau+M}{2A}). This distribution is precisely the one optimizing SqS_q with the constraint q{du[g(u)]2[P(u)]q}/{du[P(u)]q}=_q \equiv \{\int du [g(u)]^2[P(u)]^q \}/ \{\int du [P(u)]^q \}= constant. We also introduce and discuss various characterizations of the width of the distributions.Comment: 3 PS figure

    Anomalous diffusion and Tsallis statistics in an optical lattice

    Full text link
    We point out a connection between anomalous quantum transport in an optical lattice and Tsallis' generalized thermostatistics. Specifically, we show that the momentum equation for the semiclassical Wigner function that describes atomic motion in the optical potential, belongs to a class of transport equations recently studied by Borland [PLA 245, 67 (1998)]. The important property of these ordinary linear Fokker--Planck equations is that their stationary solutions are exactly given by Tsallis distributions. Dissipative optical lattices are therefore new systems in which Tsallis statistics can be experimentally studied.Comment: 4 pages, 1 figur

    The q-exponential family in statistical physics

    Full text link
    The notion of generalised exponential family is considered in the restricted context of nonextensive statistical physics. Examples are given of models belonging to this family. In particular, the q-Gaussians are discussed and it is shown that the configurational probability distributions of the microcanonical ensemble belong to the q-exponential family.Comment: 18 pages, 4 figures, proceedings of SigmaPhi 200

    Nonlinear equation for anomalous diffusion: unified power-law and stretched exponential exact solution

    Full text link
    The nonlinear diffusion equation ρt=DΔ~ρν\frac{\partial \rho}{\partial t}=D \tilde{\Delta} \rho^\nu is analyzed here, where Δ~1rd1rrd1θr\tilde{\Delta}\equiv \frac{1}{r^{d-1}}\frac{\partial}{\partial r} r^{d-1-\theta} \frac{\partial}{\partial r}, and dd, θ\theta and ν\nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (ν=1\nu =1) and the spherical anomalous diffusion for porous media (θ=0\theta=0). Exact point-source solution is obtained, enabling us to describe a large class of subdiffusion (θ>(1ν)d\theta > (1-\nu)d), normal diffusion (θ=(1ν)d\theta= (1-\nu)d) and superdiffusion (θ<(1ν)d\theta < (1-\nu)d). Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.Comment: 3 pages, 2 eps figure

    Quantum entanglement inferred by the principle of maximum Tsallis entropy

    Get PDF
    The problem of quantum state inference and the concept of quantum entanglement are studied using a non-additive measure in the form of Tsallis entropy indexed by the positive parameter q. The maximum entropy principle associated with this entropy along with its thermodynamic interpretation are discussed in detail for the Einstein-Podolosky-Rosen pair of two spin-1/2 particles. Given the data on the Bell-Clauser-Horne-Shimony-Holt observable, the analytic expression is given for the inferred quantum entangled state. It is shown that for q greater than unity, indicating the sub-additive feature of the Tsalls entropy, the entangled region is small and enlarges as one goes into super-additive regime where q is less than unity. It is also shown that quantum entanglement can be quantified by the generalized Kullback-Leibler entropy.Comment: 15 pages, 1 figur
    corecore